				2025 Symposium on	NVLSI Technology and Circu	iits (Sunday, June 8)				
Time	Suzaku III	Suzaku II	Suzaku I	Shunju III	Shunju II	Shunju I	Le Bois	La Cigogne	Le Cygne	Time
8:00-20:00					Registration					8:00-20:00
8:30-13:00										8:30-13:00
13:00-15:00	8:30-18:30 2025 Silicon Nar	noelectronics Workshop (Day 1)	Special Workshop *13:00-19:00	Works	shop 1	Workshop 2		[Satellite Room] Workshop 2		13:00-15:00
15:30-18:00			Special Workshop 13:00-17:00	Works	shop 3	Workshop 4	Workshop 5	Workshop 6	Workshop 7 *15:30-18:30	15:30-18:00
19:00-21:30				Works	shop 8	Workshop 9	Workshop 10 *18:30-21:30	Workshop 11	Workshop 12	19:00-21:30

		Workshop 5		WOLKSHOP 4
19:00-21:30		Workshop 8		Workshop 9
Special Workshop: Centennial Anniversary of FET Invention: Past, Present, and Future (FET 100) [Suzaku I]	6 Integrating AI and GPU Accelerated Manufacturing Processes, J. Linford,	Simulation to Build Real-time Digital Twins for Semiconductor NVIDIA	Computing, K.K. 7 Using Open-Sour	ce EDA for Machine Learning, T. Spyrou
1 Opening Remark, K. Endo, Tohoku Univ.	Workshop 4: Innovations and	Challenges in the Advanced Packaging Era [Shunju I]	8 Open Source Co-I	Design of LLMs for the Edge - From Clo
 2 Remark on FET100, B. Zhao, President, IEEE EDS 3 Overview - FET History, Present and Future, H. Iwai, NYCU/Institute of Science Tokyo 	1 3D Heterogeneous Integration and E	DA, A. VVarnai, Siemens	-	ence, G. Kielian, Google Research pen-Source MOSbius, P. Kinget, Colum
4 Structural Evolution and Functional Integration of FETs Traced in a Public Semiconductor Roadmap and the Future Prospectives, Y. Hayashi, AIST	2 Co-Packaged Optics: Enabling Scalab Computing, L. Gantz, NVIDIA	le and Efficient Interconnects for the Future of Accelerated	Workshop 8:	Manufacturing Advanced VLSI Syst
5 The Evolution of HPC and AI and Their Demands on FET Technologies, M. Kondo, Keio Univ.	:	entation of 3DI in Advanced Memory, M. Tagami, Kioxia ons in 3D Chiplet Platforms and Integration, K. Larsen, Synopsys		Learning [Shunju ith Virtual Silicon: The Role of Process
6 GAA: Genuine Architecture for AI Generation, Y. Masuoka, Samsung 7 Emerging FETs in Future Chiplet LSIs, H. Wakabayashi, Institute of Science Tokyo		t Development to Drive 3DI Expansion, A. Raley, Tokyo Electron Ltd		ductor Manufacturing, J. Ervin, Lam Rea al Twins and ML/AI During Manufacturi
8 Evolution of Technology to 3D-Memory in DRAM, Flash, and Emerging Memories, J. Lee, Samsung	6 Ultra-Dense 3D Heterogeneous Integ Readiness, S. Choi, Standford / SiCla	ration: Architectures, System-Level Benefits, and Manufacturing rity	Y. Hanada, Dassa	ult Systèmes Twins and Hybrid Al Applied Across Pr
9 Progress and Future Challenges of Si and Wide Bandgap Semiconductor Power FETs, T. Kimoto, Kyoto Univ.	Workshop 5: Architectural Be	nchmarking of Compute-in-Memory Systems [Le Bois]	W. Verachtert, Im	
10 Closing Remark, T. Kimoto, President, JSAP	1 CIM-based Processing of DNNs, X. Si			Process Modeling for Assessing GAA St Yield with Process Virtualization, Feat
Workshop 1: Innovating Semiconductor Manufacturing: Science Meets AI [Shunju II+III]	2 GainSight: Fine-Grained Memory Acc T. Tambe, Stanford Univ.	ess Profiling for GCRAM-Based AI Accelerators,	A. Torres, Siemen	
1 Opening (Science Meets AI), J. Jeong, Samsung Electronics	3 Tile Efficiency is not System Efficience	y - CIM Architecture Studies of LLMs and Other Large DNNs	Workst	hop 9: Hybrid Bonding-Breaking Bo
2 Building Scientific Foundation Models: Challenges, Methodologies, and Semiconductor Manufacturing Applications, N. Park, KAIST	Accelerators, P. Narayanan, IBM Res 4 HISIM: Efficient Design Space Explor	earch Almaden ation of 2.5D/3D Heterogeneous Integration for AI Computing,		Heterogeneous Integration in the Er Outlook for Chip-to-Wafer Memory Stac
3 Applications of Science-driven AI in the Semiconductor EDA, I. Markov, Synopsys 4 Light Out! Virtualizing the Semiconductor Ecosystem, J. Ervin, Lam Research	Y. Cao, Univ. of Minnesota 5 Recent Development of NeuroSim Be	nchmark Framework towards Angstrom Nodes and	•	spection Challenges in Hybrid Bonding e, Samsung Electronics Co.
5 From Challenge to Control: Bridging Semiconductor Process Complexity with Science-Based AI,		n, S. Yu, Georgia Institute of Technology	-	xt Generation of Hybrid Bonding, J. Ab
C. Jeong, UNIST 6 An Exploration of the Necessity for Science-driven Al Integration, K. Azzizzadenesheli, Nvidia	Workshop 6: Recent Advances i	n CMOS Cellular and Molecular Biosensors [La Cigogne]	•	hallenges and the Resolution of Paths, Polymer Hybrid Bonding toward to 3D F
Workshop 2: Advanced Heterogeneous System with 3D Chiplet Integration [Shunju I]	1 Multi-Modal CMOS Biosensing and A H. Wang, ETH Zurich	ctuation: Advancing Cellular and Molecular Diagnostics,	-	, Toray Industries Inc.
1 Hybrid Bonding Interconnect Pitch Scaling: Wafer-to-Wafer and Die-to-Wafer Cu/SiCN Hybrid Bonding, E. Beyne, Imec	2 Continuous Monitoring of Small Mole CMOS Electronic, JC. Chien, Univ. o	ecules Using Electrochemical Aptamer-Based Biosensors with f California	J. Yeo, Applied Ma	
2 The Role of EDA as Chips Transform Into 3D Systems, K. Roze, Cadence Design Systems	3 Neuronal Synaptic Connectivity Map	ping by CMOS Microchip, D. Ham, Harvard Univ.	-	ology, and Process Challenges in Die-to Process Control for Hybrid Bonding Ap
3 HBM (High Bandwidth Memory) and Advanced Packaging Technologies for AI Era, K. Lee, SK hynix		ics Chip for Single-Molecule Biosensing, D. Hall, UC San Diego	M. Pau, Onto Inno	, , , , , , , , , , , , , , , , , , , ,
4 Chiplet and Heterogeneous Integration Technologies for HPC and AI, K. Sakuma, IBM	5 Cyber-Secure Biological Systems, R. 6 Panel Discussion	T. Yazicigil, Boston Univ.	9 High-Throughput H. Chin, NearField	In-line AFM Metrology for Hybrid Bond Instruments
Workshop 3: Semiconductor Manufacturing with AI [Shunju II+III]	Warkshap 7: What is Passible	with Open Chin Decign? The Journey of Far [Le Ovene]	10 Innovative Metro	ology Solutions for HB Process Challer
1 Revolutionizing Chip Manufacturing through AI, G. Thareja, Applied Materials	:	with Open Chip Design? The Journey so Far. [Le Cygne] Design and Fabricate LSI, J. Akita, Kanazawa Univ.	Worksl	hop 10: Advancing Neuromorph
 Recursive AI in Material Engineering, YJ. Kang, Synopsys Leveraging AI for Enhanced Efficiency and Quality in Semiconductor Manufacturing, S. Shuto, Toshiba 		rce MPW Access in IHP Technology, F. Vater, IHP		mmercialization: From Sensors
4 Deep Topological Data Analysis and Self-Supervised Learning for Yield and Quality Optimization,	3 End-to-end Open-source IC Design, F		1 Novel Neuromorp Technology Centr	ohic Visual Perception Modalities to En e
J. Giri, Intel		course With IC Emphasis, H. Pretl, Johannes Kepler Univ.	2 MISEL: A Multiba	nd Event-Based Intelligent Vision Syst
5 Enabling a New Paradigm In Semiconductor Design-Manufacturing Co-optimization through Simulation Technologies, V. Spandan, Sony	•	nd Chips for Embodied AI, C. Reita, Fondazione Chips-IT .anguage Developed as Open-Source Software, N. Hatta, PEZY		nical Research Centre of Finland Ltd. uromorphic Computing and Sensing: Bo

			2025 Symposiu	um on VLSI Technology and	Circuits (Monday,	June 9)					
Time	Suzaku III	Suzaku II	Suzaku I	Shunju III		Shunju II	Shunju I	Salon de Charme	Le Bois	La Cigogne	Time
7:30-18:00			Regis	stration							7:30-18:00
8:25-12:05		Short Cou Circuits and Systems for 8:25 Opening 8:30 Hardware Accelerator Design for Al: Enabling Efficient Gener 9:20 Architecture Trends for Al Hardware Platforms, N. James, AM	r AI and Computing ative Models, L. Chang, IBM	9:20 2D Materials and Their Appli	Key VLSI Techno cchnology Trends and System	Course 1 logies in the AI Era n-Level Perspectives, L. Yang, TSMC s Gained -, J. Appenzeller, Purdue Univ.				8:25-17:00 [Satellite Room] Short Course 1	8:25-12:05
	8:30-18:30 2025 Silicon Nanoelectronics	 10:10 Break 10:25 Modular Chiplet Approaches for Scalable and Efficient Machin 11:25 Al for EDA: Challenges and Opportunities, I. Markov, Synopsy 				ration Landscape and Roadmap, E. Beyne, imec emory Applications, T. Lill, Lam Research					
12:05-13:10	Workshop								Lunch		12:05-13:10
12:55-17:30	(Day 2)	 12:55 Connectivity Technologies to Accelerate AI, T. C. Carusone, Un 13:45 3D Optical Interconnect Design, F. Lee, TSMC 14:35 Break 14:50 HBM for AI Computing, J. Lee, SK hynix 15:40 Semiconductor Storage for Further Evolution of Generative A 16:30 Advancements in Power Architectures for AI Computing: The KH. Chen, National Yang Ming Chiao Tung Univ. 			e Outlook of Emerging Memo	ory Technologies, S. G. Kim, SK hynix to System, HO. Kim, Samsung d CMOS Image Sensors, Y. Kagawa, Sony					12:55-17:30
17:30-21:45	19:30-21:45 2025 Spintronics Workshop					17:30-19:30 Demo Session & Reception 18:00- Reception					17:30-21:45

	-	٠
1		
	-	

Spyrou, Precision Innovations Inc

rom Cloud to Handheld - for Ushering in an Era of

, Columbia Univ.

SI Systems Using Virtualization and Machine

Shunju II+III] Process Modeling and Machine Learning in High-Lam Research

ufacturing of Advanced VLSI Systems,

cross Processes in a Fab Ecosystem,

GAA Standard Cells, E. Panning, SiClarity on, Feature Engineering and Targeted Sampling,

ing Boundaries in Advanced Packaging the Era of Chiplets and AI [Shunju I]

ory Stacking, C. Wang, Micron Inc.

Bonding for Advanced Packaging and Heterogeneous

g, J. Abdilla, Besi

Paths. I. Son. TEL

to 3D Packaging Integration,

ogic and Memory Applications,

n Die-to-wafer Hybrid Bonding, C. Lenox, KLA ding Applications in HPC and AI,

rid Bonding Applications,

S Challenges in Advanced Packaging, A. Lee, Nova

morphic Technology Research and ensors to Edge to Cloud [Le Bois]

es to Enable Physical AI, X. Iturbe, IKERLAN

ion System,

3 Nanophotonic Neuromorphic Computing and Sensing: Broadcasting Networks of Nanoscale Neural

Nodes that Receive, Transmit, and Analyze Light Signals, A. Mikkelsen, Lund Univ.

- 4 Low-power and Secure Photonic Accelerators Based on Augmented Silicon Photonics Platforms, F. Pavanello, CROMA, CNRS
- 5 Integrated Photonics for Hardware Accelerators and Neuromorphic Computing, M. Hejda, Hewlett-Packard Labs (HPE)
- 6 Heterogeneous Neural Processing Units Leveraging Analog In-Memory Computing for Edge AI, I. Boybat, IBM Research Europe-Zurich
- 7 Innatera's Spiking Neural Processor (SNP): Mixed-signal MCU for Power Constrained Tiny ML Applications, P. Bogdan, Innatera Nanosystems B.V.
- 8 A 3D Integration Technologies for Neuromorphic Systems, G. Van der Plas, Imec
- 9 Expanding Edge AI for Wearable Augmented Reality (AR) with 3D Silicon Integration, O. Moreira, Snap Inc.
- 10 Scaling Up Neuromorphic Computing to Cloud-Level, F. Negri, SpiNNcloud Systems GmbH

Workshop 11: Revolutionizing Electronics with GaN: Opportunities and Challenges [La Cigogne]

- 1 RF GaN-on-Si Electronics: Advancing Technology Frontiers and Bringing from Lab to Fab, G. I. Ng, Nanyang Technological Univ.
- 2 GaN Power Devices: Plenty of Room at the Bottom and the Top, Y. Zhang and H. Wang, Univ. of Hong Kong
- 3 High Temperature Electronics: An Exciting New Application for Gallium Nitride HEMTs,
- J. Niroula, Massachusetts Institute of Technology
- 4 Vertical GaN Power Devices: Design, Characterization and Perspectives, J.-H. Hsia (Sharon) , Massachusetts Institute of Technology
- 5 Monolithic Integration in Power GaN: Prospects and Challenges An Examination of Lateral GaN Technology After a Decade of Development, A. Syed, GlobalFoundries
- 6 Developing High-Performance GaN Complementary Circuit Technology, N. Chowdhury, Bangladesh Univ. of Engineering and Technology (BUET)
- 7 GaN Technologies: A Foundry Perspective, S. Bentley, GlobalFoundries
- 8 GaN on Si for RF Applications An Industry Perspective, Y. Ngu and A. Raman, GlobalFoundries

Workshop 12: Chip Tapeout Classes: Methodologies, Technologies and Outcomes [Le Cygne]

- 1 Opening, B. Nikolic, Univ. of California, Berkeley
- 2 Creating Agile Chip Design Flows Using High-Level Synthesis and Mflowgen, P. Raina, Stanford Univ.
- 3 Chip Design Flows Using Commercial Tools in Cloud-Based Classroom Environments,
- M. Morrison, Univ. of Notre Dame
- 4 Three Chips in a Semester, B. Nikolic, V. Jain, Univ. of California, Berkelev
- 5 Anatomy of an Undergraduate SoC Tape Out Class, K. Kornegay, Morgan State Univ.
- 6 Balancing Creative Freedom and Success Rate via Standardization in a Tapeout Course Sequence, K. Mai, Carnegie Mellon Univ.
- 7 From Schematic to Silicon: ADC Tapeout in 10 Weeks, D.Hall, University of California, San Diego
- 8 Industry announcements and Q&A

2025 Symposium on VLSI Technology and Circuits (Tuesday, June 10)

							, ,		
Time		Suzaku III		Suzaku II	Suzaku I		Shunju III	Shunju II	Shunju I
7:00								Registration	
8:00- 10:00		[Satellite Room] Opening & Plenary 1				SK hynix	8:00-8:40 Opening Remarks 8:40-9:20 (Plenary) Driving Innovation in DRAM Technology-To 9:20-10:00 (Plenary)	Opening and Plenary Session 1	
						NVIDIA	Innovate VLSI for AI Growth		
		C2: RF/mm-wave Tx and Rx		C1: CIM and Quantum-ins	spired Computing			T1: Technology Highlights 1	
	C2-1	10:30-10:55	C1-1	10:30-10:55		T1-1	10:30-10:55		
	Institute of Science Tokyo	A Ka-Band 8-Stream Phased-Array Receiver with Time-Hopping Blocker Rejection for 6G Applications	тѕмс	A 3nm 125 TOPS/W-29 TFLOPS/W, 90 TOF INT8 and FP16 Digital-CIM Compiler with I		Intel	Intel 18A Platform Technology Featuring R	ibbonFET (GAA) and PowerVia for Advanced High-Pe	erformance Computing
	C2-2	10:55-11:20	C1-2	10:55-11:20		T1-2	10:55-11:20		
	imec	An IEEE802.15.4ab/a/z Compatible IR- UWB 2TRX with Dual-Antenna Full-Duplex 1x3 SIMO Radar Sensing and Aliasing Suppressing Semi-Synchronous TX	The Hong Kong Univ. of Science and Technology	Eor Spiking Noural Notwork	arge-Domain Compute-In-Memory Macro	Sony Semiconductor Solutions	• A Back-illuminated 10 µm-pitch SPAD Dept	th Sensor with 42.5% PDE at 940 nm using an Optim	ized Doping Design
	C2-3	11:20-11:45	C1-3	11:20-11:45		T1-3	11:20-11:45		
10:30 12:35	of	A Triple-Band Transceiver for Formation Flying Satellite Communication with Dual Circular Polarized Wireless Power and LO Transfer		LLM-CIM: A 28nm 126.7TOPS/W Input-LU Reconfigurable Matrix Multiplication and N		Georgia Institute of Technology	Demonstration of Tungsten-Doped Indium	Oxide MOSFETs with 3 Angstrom EOT, Improved Sta	bility and High On-Current
	C2-4	11:45-12:10	C1-4	11:45-12:10		T1-4	11:45-12:10		
	Pusan National Univ.	A Digital Envelope Tracking RF Power Amplifier Achieving 400MHz Channel Bandwidth and 91.9% Efficiency for Upper-Mid Band Extreme Massive MIMO 6G Communications	POSTECH	An 8K-Spin Ising Machine IC with Reconfig Limitless Multichip Extension	gurable Many-Body Spin Interactions and	тѕмс	Performance Step-Up in PMOS with Monol	ayer WSe ₂ Channel	
	C2-5	12:10-12:35	C1-5	12:10-12:35		T1-5	12:10-12:35		
	National Univ. of Singapore	Sub-µW Battery- and Crystal-Free Tag featuring 802.11ba/b-Compliant Wake-up Receiver, Backscattered Transmitter and 3D Localization	Univ. of California Santa Barbara	, m-Zephyr: A Digital In-Memory Ising Chip Connectivity Based on a Modified 3D Zeph	with 240 Spins Featuring Enhanced yr Topology	Samsung Electronics	Highly Scalable and Reliable Cell Characte	ristics for 1Tb 9th Generation 3D-NAND Flash Memo	гу
12:00									

12:00-14:00

14:00							
		C5: Application-Specific ADCs	C4: SRAM and Mask ROM		T2: Oxide Semiconductors 1: Novel Applications and Structures		JFS1: 3D Integration and Photonic
	C5-1	14:00-14:25	C4-1 14:00-14:25	T2-1	14:00-14:25	JFS1-1	14:00-14:25 (Invited)
	Univ. of Michigan	A Calibration-Free 175MHz Bandwidth 60dB SNDR ۵ th -order Bandpass Cascaded Time-Interleaved Noise-Shaping SAR ADC with Optimum Zero Placement	TSMC Design A 3nm FinFET 563kbit 35.5Mbit/mm2 Dual-Rail SRAM with 3.89pJ/access High Technology Energy Efficient and 27.5µW/Mbit 1-cycle Latency Low-Leakage Mode Japan	тѕмс	Integration of 0.75V $V_{\rm DD}$ Oxide-Semiconductor 1T1C Memory with Advanced Logic for An Ultra-Low-Power Low-Latency Cache Solution	GlobalFoundri	Key Technologies and Performan is Aspects for Electrical and Optical Interconnects
	C5-2	14:25-14:50	C4-2 14:25-14:50	T2-2	14:25-14:50	JFS1-2	14:25-14:50 (Invited)
14:00- 15:40	Delft Univ. of Technology	A 4GHz 2b 5 th Order Continuous-Time $\Delta\Sigma$ Modulator with –100.1dBc THD and 122dBFS SFDR in 100MHz BW	IBM A 6+ GHz 128KB Multi-Port L1 Cache using Ground Rule Clean 10T Bitcells in 5nm Technology	National Univ. of Singapore	A 2-Transistor-1-Modulator (2T1M) Electronic-Photonic Hybrid Memory Architecture for Deep Neural Network CIM and Very Large-Scale Transformers	AIST	3D Interconnect Technology for Superconducting Quantum Device
	C5-3	14:50-15:15	C4-3 14:50-15:15	T2-3	14:50-15:15	JFS1-3	14:50-15:15
	The Univ. of Tokyo	A 76.5-dB Dynamic-Range 8-bit 100-MS/s Variable-Range SAR ADC	TSMC Design A 13.8% Speed-Enhanced 1T Mask ROM by Algorithmically Signed Program Data on Technology 3-nm Fin-FET Logic CMOS Japan	National Univ. of Singapore	BEOL-Compatible ITO FET with Ultra-Short Channel Length of 5 nm	Intel	1.536TB/s/mm2 Bandwidth Scala Attention Accelerator with 22.5GC Throughput High Speed SoftMax I Quantized Transformers in Intel 3
	C5-4	15:15-15:40	C4-4 15:15-15:40	T2-4	15:15-15:40	JFS1-4	15:15-15:40
	Univ. of California, Berkeley	A 4-Element Baseband Charge-Domain Beamformer Integrated into 9-bit SAR ADC Achieving 32dB Spatial Notch with 52.1mW	A 37.8Mb/mm ² SRAM in Intel 18A Technology Featuring a Resistive Supply-Line Write Scheme and Write-Assist with Parallel Boost Injection	National Univ. of Singapore	A Generalizable Tri-Layer Design Framework for Enhancing OSFET Reliability	Celestia Al	al A 3D-Integrated 56 Gb/s Silicon F Transceiver with 5nm CMOS Elec for Optical Compute Interconnect
		C8: High-Speed ADCs	C7: High-Density Short-Reach Links		T4: RRAM and MRAM		JFS2: DTCO and Design Enablemer
	C8-1	16:00-16:25	C7-1 16:00-16:25	T4-1	16:00-16:25	JFS2-1	16:00-16:25 (Invited)
	The Univ. of Tokyo	An 11.9-ENOB 560-MS/s Subranging ADC Employing Amplifier-Switching Architecture with Multi-Threshold Comparators	Institute of Semiconductors, Chinese Kadamy of High-Density Co-Packaged Optics Sciences	National Tsing Hua Univ.	l High Density 7nm FinFET Dielectric RRAM in Embedded Memory Applications	тѕмс	Analog Cells DTCO and Their Imp Advanced Node CMOS Analog/Mi Signal Circuits
	C8-2	16:25-16:50	C7-2 16:25-16:50	T4-2	16:25-16:50	JFS2-2	16:25-16:50 (Invited)
	Texas A&M Univ.	A 46GS/s 7-bit Time-Interleaved Time- Domain ADC with Synthesizable Unit ADCs in 16nm FinFET	Cadence Design Latency TX Clock Alignment in 3nm FinFET	Univ. of Chinese Academy of Sciences	First Implementation of Monolithic Integrated CIM with 1Mb Ultra-High-Density 8-Layer 3D VRRAM, Achieving High Computing Density (204.8GOPs/mm ²) and FoM (2.13x10 ⁶ GOPS ² /W/mm ²) for Efficient Scientific Computing	Qualcomm Technologie	
	C8-3	16:50-17:15	C7-3 16:50-17:15	T4-3	16:50-17:15	JFS2-3	16:50-17:15 (Invited)
16:00- 18:05		A Single-Channel 14b 3GS/s Pipelined ADC in 28nm Technology	NVIDIA A 77 fJ/bit 8 Gbps Low-Latency Self-Timed Die-to-Die Link for 2.5D and 3D Interconnect in 3nm	imec	High Density, High Speed STT-MRAM N7 Macros: Material and DTCO Exploration	Design	 Backside Routing Enablement Considerations for Advanced Noc ns Devices
	C8-4	17:15-17:40	C7-4 17:15-17:40	T4-4	17:15-17:40	JFS2-4	17:15-17:40
	Univ. of Macau	A PVT-Robust 16GS/s 4×TI Time-Domain ADC with Vernier-based Multipath Flash TDC achieving 25.7fJ/c-s FoM in 28nm CMOS	Oregon State Random Forest Classification for Compensating 47dB Loss in 16nm FinFET	TSMC	Demonstration of Embedded MRAM with Sub-50 nm MTJ for RAM-Like and MCU Applications		Realistic and Scalable TCAD for Y s Aware Full-Chip DTCO
			C7-5 17:40-18:05	T4-5	17:40-18:05	JFS2-5	17:40-18:05
			KAIST A 12-Gb/s Single-Ended Transmitter with Echo-Canceling FFE for Multi-drop Bus in 28nm CMOS	Fudan Univ.	96-Kb Voltage-Controlled-Magnetic-Anisotropy MRAM for In-situ Reservoir Computing with High Endurance ($>10^{12}$), Sub-ns Operation (0.3 ns) and Ultralow Power Consumption (40 fJ)	Samsung Electronic:	
18:00- 19:30							

	Evening Panel Discussion 2	Evening Panel Discussion 1	
20:00- 21:30	Practical Circuits & Technology Training: Academia vs. Industry – Where Do We Learn the Most?	What Can Semiconductor Industry Do for Greener Society?	

,					
	Salon de Charme	Le Bois	La Cigogne	Le Cygne	Time 7:00-
			1		17:00
					8:00-
					10:00
		C3: Energy Harvesting			
]	C3-1 10:30-10:55			
		A Fully Integrated SC Converter Du, Delft Hybridizing Dickson and Continuously-			
		Univ. of Scalable- Conversion-Ratio Topologies Technology with a Wide Bipolar VCR range for Energy			
		Harvesting			
	-	C3-2 10:55-11:20			
		A Reconfigurable Multi-Level AC-DC/DC- Korea DC Ocean Energy Harvester IC Achieving			
		Univ. 77.7% End-to-End Power Efficiency for			
		Triboelectric Nanogenerators			
	-	C3-3 11:20-11:45			10:30-
		Fudan A Globally Optimized 3-D MPPT System			12:35
		Univ. for Dual-Band RF Energy Harvesting with Collaborative Source Reconfiguration			
	-	C3-4 11:45-12:10			
	-	C3-4 11:43-12:10			
		Sogang Ground-Symmetric Pile-Up Resonant			
		Univ. Energy Harvester			
	{				
	Diversity Meeting - Hosted				12:00-
	by SSCS Women in Circuits				14:00
onics		C6: Imagers		T3: Modeling and Reliability	
		C6-1 14:00-14:25		T3-1 14:00-14:25	
mance		A 1.22 e-rms Temporal Random Noise, 110		Towards Understanding Cryogenic	
tical		Samsung dB High Dynamic Range, 2.988 µm Pixel- Electronics Pitch 3-Stacked Digital Pixel Sensor with		Peking Reliability in FinFETs Under Hot Carrier Univ. Stress: New Findings on Ge Migration, and	,
		On-Chip HDR Merger		Impacts of Tail States Evolution	
		C6-2 14:25-14:50		T3-2 14:25-14:50	
for		Smy A 0.8µm 32Mpixel Always-On CMOS		National	
for evices		Semiconductor Image Sensor with Windmill-Pattern Edge Solutions Extraction and On-Chip DNN		TsingHigh Resolution Well-Plasma DetectionHuaDevice in 16nm CMOS FinFET Process	
				Univ.	14:00- 15:40
		C6-3 14:50-15:15		T3-3 14:50-15:15	
Scalable 2.5G0PS		Carnegie Carnegie Multispectral Vision Sensor with Embedded Convolutional Neural Network		National Unified Physics-Based CFET Thermal	
Max for		Using Programmable Fractional Weights		TaiwanSPICE Considering BEOL, Substrate, andUniv.BSPDN Using Adiabatic Cones	
ntel 3		and nMOS-Only PWM Pixels			
		C6-4 15:15-15:40		T3-4 15:15-15:40	
con Photonic		A 12-Mpixel Automotive Image Sensor Samsung with 137-dB Single-Exposure Dynamic		National Uncovering True DIBL in Oxide- Semiconductor FETs: Impact of Negative	
Electronics nects		Electronics Range and 0.55-electron Read Noise by Oversampling-Based Noise Reduction		Univ. of Singapore DRAM Retention	
ement		C9: Advanced Bio-Sensing Techniques		T5: Imagers and Sensors	
		C9-1 16:00-16:25		T5-1 16:00-16:25	
Impost		Erequency-Division Multipleved Magnetic		A Monolithic Dual-Laver Pixel Design with	
Impact on g/Mixed-		Southern Sensor Network for Real-Time Motion		Huawei BEOL IGZO Transistors featuring High Technologies, Dual Conversion Gain Ratio and Scaled	
		California Tracking		Japan Pixel Size for Future Image Sensors	
		C9-2 16:25-16:50	1	T5-2 16:25-16:50	1
ce-Area		A 10.42µW/Ch. PPG Sensor with a			
id Analog inology Co-		POSTECH Zoomed Sampling Based on Velocity of		Samsung Adaptive Metasurface Microlens Array for Electronics Ultra-Wide-Angle CMOS Image Sensors	
5, 10		Blood Flow			
		C9-3 16:50-17:15		T5-3 16:50-17:15	
nt	[Satellite Room] T5	DERMIS: A Flexible Fully-Integrated 600µm-Resolution Per-Taxel Slip-		Back-Illuminated U-Shape p-i-n SPAD	16:00- 18:05
Node GAA	15	KU Leuven a-IGZO TFT for Large-Area High-Density		Yonsei With High PDE and Broad Spectral Univ. Response Fabricated in 110nm CIS	
		Electronic Skins		Foundry Technology	
	-	C9-4 17:15-17:40		T5-4 17:15-17:40	
for Yield-		Rice A 28nm Online Spike Sorting Processor		Yonsei Optimization of a 3.5 µm Pitch 3D-Stacked	
		Univ. Based on Multi-Channel Template Matching		Univ. Back-Illuminated SPAD in 40 nm CIS Technology: Achieving 37% PDP at 940 nm	
				T5-5 17:40-18:05	-
page Reliability				A 1.2Mp 2.8 um 4-tap Indirect Time- Samsung of-Flight Sensor with 42% Quantum	
Advanced				Electronics Efficiency at 940 nm Wavelength with Enhanced Angular Response	
			SSCS/EDS Young		
			Professionals and Women		18:00- 19:30
	1	1	in Circuits Mentoring Event		17.30

[2025 Symposium on VLSI Technology and Circui				
Time 7:00-	Suzaku III	Suzaku II Suzaku I	Shunju III Shunju II Registration	Shunju I	Salon de Charme	Le Bois	Le Cygne Tii 7:1 17
17:00			Award and Plenary Session 2				17
8:00- 10:00		[Satellite Room] Award & Plenary 2	8:00-8:40 Award Ceremony PL2-1 8:40-9:20 (Plenary) MediaTek Enabling Generative AI: Innovations and Challenges in Semiconductor Design Technologies	5			8: 10
			PL2-2 9:20-10:00 (Plenary) STMcmelectonics The Evolution of Edge AI: Contextual Awareness and Generative Intelligence				
	C11: High-Performance Oscillators C11-1 10:30-10:55	C10: AI Accelerators 1 C10-1 10:30-10:55	T6: Technology Highlights 2			C12: Ultra High-speed Wireline C12-1 10:30-10:55	
	Huazhong A 0.06mm ² 27.5-to-30GHz Series Jniv. of Resonance VCO with Magnetic Mutual Science and Resistance Achieving 207.2dBc/Hz FoM _A Jechnology at 10MHz Offset	National Tsing CATTUS: A 4K-UHD 30fps Deep Image Processor for Channel Attention Equipped U-Net Hua Acceleration in 16nm FinFET Univ.	imec High-Density Wafer Level Connectivity Using Frontside Hybrid Bonding at 250nm Pitch and Extreme Wafer Thinning	d Backside Through-Dielectric Vias at 120nm Pitch After		imec A 7-bit 150-GSa/s DAC in 5nm FinFET CMOS	
	C11-2 10:55-11:20 A 0.06mm ² 14.7-to-20.2GHz Quad-Core Fudan VCO Enabled by the Folded Circular Univ. Transformer Achieving 201.1dBc/Hz FoM ₇ and 203.4dBc/Hz FoM _A	C10-2 10:55-11:20 KAIST NUVPU: A 4.8-9.6 mJ/frame Progressive NTT-based Unified Video Processor for Stable Video Streaming and Processing with Neural Video Codec	T6-2 10:55-11:20 Micron Technology Voltage Reduction (1.4V) and Array Scaling (41nm) of Ferroelectric NVDRAM for Low-Power	er and High-Density Applications		C12-2 10:55-11:20 Intel A 128Gb/s 0.67pJ/b PAM-4 Transmitter in 18A with RibbonFET and PowerVia	
	C11-3 11:20-11:45	C10-3 11:20-11:45	T6-3 11:20-11:45		-	C12-3 11:20-11:45	
		Univ. of California, San Diego Energy-Efficient Hyperdimensional Computing via Progressive Search	The Univ. of A Gate-All-Around Nanosheet Oxide Semiconductor Transistor by Selective Crystallization Tokyo	of InGaOx for Performance and Reliability Enhancement		A Monolithic 400Gbps Electro-Optical Marvell Retimer with Integrated TIA and Class-AB Semiconductor Silicon-Photonics/VCSEL Driver in 5nm FinFET	10:12
	C11-4 11:45-12:10	C10-4 11:45-12:10	T6-4 11:45-12:10			C12-4 11:45-12:10	
	Fechnology 125°C	Univ. of Michigan EVA: A 16mm ² 1.54TFLOPS Tiled-Based Accelerator for Evolvable Edge Computing	Peking Univ. First Demonstration of 1T FDSOI-based >1000fps Image Sensor with In-Pixel Computing			Samsung A 212.5Gb/s PAM-4 Receiver with Mutual Electronics Inductive Coupled Gm-TIA in 4nm FinFET	
	C11-5 12:10-12:35 A 24-MHz Crystal Oscillator with 6.9-	C10-5 12:10-12:35	T6-5 12:10-12:35			C12-5 12:10-12:35 A 128Gb/s ADC/DAC Based PAM-4	
	Anguiw µs Startup Time and 2% Injection-∆F Pass and Tolerance Using Phase-Interpolator- Assisted Synchronized Injection	MAVERIC: A 16nm 72 FPS, 10 mJ/frame Heterogeneous Robotics SoC with 4 Cores and 13 California, Berkeley	Huawei Technologies 1T1C 3D HZO FeRAM with High Retention (>125°C) and High Endurance (>1E13) for Embed	ded Nonvolatile Memory Application		Manell Transceiver with >45dB Reach in 3nm Semiconductor FinFET	
12:35- 14:00							12: 14
	C14: Analog Techniques	C13: AI Accelerators 2	TFS1: Memories for AI Applications	T7: 3D Power Delivery Network	C16: Hardware Security	C15: Biomedical Readout and Stimulation	T8: Integrated Optical Devices and Photodetector
	C14-1 14:00-14:25	C13-1 14:00-14:25	TFS1-1 14:00-14:25 (Invited)	T7-1 14:00-14:25	C16-1 14:00-14:25	C15-1 14:00-14:25	T8-1 14:00-14:25
	Univ. A Pipelined-SAR-TDC with Time-Domain College Dublin Noise-Shaping Self-Calibration	KAIST Adelia: A 4nm LLM Accelerator with Streamlined Dataflow and Dual-Mode Parallelization for Efficient Generative AI Inference	Technology High Bandwidth Memory for Al	imec Backside Power Delivery for Power Switched Designs in 2nm CMOS: IR Drop and Block-level Power-Performance-Area Benefits	Univ. Equalized WDDL for Provable Side- Channel Security	A Fully Balanced Biphasic Yonsei Neurostimulator with Body-Coupled Univ. Powering and Full-Duplex Communication via Baseband Load Shift Keying	Technology
	C14-2 14:25-14:50	C13-2 14:25-14:50	TFS1-2 14:25-14:50 (Invited)	T7-2 14:25-14:50	C16-2 14:25-14:50 A 1.7 pJ/bit 10 MHz Calibration-Free PV	C15-2 14:25-14:50 T A Flexible HV Stimulator ASIC with	T8-2 14:25-14:50
14:00- 15:40		Univ. of A 22nm 25.08TOPS/W Multi-Task Transformer Accelerator with Mixed Precision Structured Michigan Sparsity and Two-Stage Task-Adaptive Power Management	Electronics Emerging Embedded Non-Volatile Memories Beyond 28nm in Al Era	A Novel Backside Signal Inter/Intra-Cell POSTECH Routing Method Beyond Backside Power for Angstrom Nodes	POSTECH Variation and Mismatch Tolerant Latch- Based True Random Number Generator in 4 nm FinFET	imec Stimulus-Synchronized Charge Balancing and Embedded CM Regulation for Implantable Peripheral Nerve Stimulation	Univ. Efficient Optical Data Transmission 14:
	C14-3 14:50-15:15	C13-3 14:50-15:15	TFS1-3 14:50-15:15	T7-3 14:50-15:15 Heterogeneous 3D Integration of Low-	C16-3 14:50-15:15	C15-3 14:50-15:15 An N-type-only a-IGZO Thin-Film-	T8-3 14:50-15:15
	01 40-1600F	Cornell Tech ASAP: A 28nm Transformer Training Accelerator with Alternating Sparsity and Asymmetrica Microscaling Floating-Point Precision		Voltage E/D-mode GaN HEMTs on KAIST CMOS Chip for Efficient On-Chip Voltage Regulation in Active Power Delivery Networks	Columbia Univ. GUARD: A Fully-Digital TDC-Based Clock and Voltage Glitch Detector with On- Demand Protection in a 28nm CMOS	KU Transistor Based Nyquist-rate 8-bit Leuven CDAC+SAR ADC Consuming 1.7mW at 32ksps and Achieving 44dB SNDR	High-Performance Monolithic 3D KAIST Integrated Red µLEDoS Display for AR/ VR
	C14-4 15:15-15:40 A Boosted 3.5W, -81.6dB THD+N, 92.6%	C13-4 15:15-15:40	TFS1-4 15:15-15:40	T7-4 15:15-15:40 A 10W 3.8-5V Input IVR Chiplet with	C16-4 15:15-15:40	C15-4 15:15-15:40	T8-4 15:15-15:40 A Heterogeneous CMOS Chip Monolithically
	Total Efficiency, Battery-Powered Class-D	Tsinghua A 94Hz Inference and 7.4mJ/epoch Fine-Tune Edge SoC for Diffusion-based Robot Univ. Manipulation with Speculation and Disturbance Enhancement C17: CIM-based AI Accelerators	SK 224 TOPS/W-level Analog Computation in Memory Cell Using Hybrid Ferroelectric Tunnel hynix Junction Having Enhanced On-State Conductance T10: Advanced CMOS Platform	Tsinghua Univ. 93%-Peak-Efficiency and 3.2A/mm ² Density Featuring Wide Load Range and Adaptive Ganging for 2.5D/3D Vertical Power Delivery T11: Ferroelectric Materials for Memory Applications	National Univ. of Singapore Against Power Analysis Attacks C20: Acoustic Sensors	A 16-QAM-Based Multi-Node BCC System KAIST with Bias-Electrode-Free Multi-Channel ExG Readout ICs C19: Frequency Generation	Chejiang integrating Monolayer MOS Citip Monotulinativ Univ. Detection: A Scalable Platform Leveraging 2D Materials to Complement and Surpass Silicon T9: NAND and NOR
	C18-1 16:00-16:25	C17-1 16:00-16:25	T10-1 16:00-16:25	T11-1 16:00-16:25	C20-1 16:00-16:25	C19-1 16:00-16:25	T9-1 16:00-16:25
	Sogang A 0.087 fs FOM Current-Mirror-Based Analog-Assisted Digital LDO with VO Ripple Optimization	KAIST DIAL: An Energy-Efficient DRAM In-Memory Computing Accelerator with Compact Partial Product LUT and Twisted Differential ADC	imec Monolithic CFET Flow Improvements Integrating Cover Spacer and Dual-WF RMG		Delft Univ. of Technology A -87.2 dB THD+N 89.1 dB DR Fully- Integrated Shunt-Resistor-Based In-Line Current Sensor with up to 2 MHz 14.4 V PWM Rejection	Dublin 32.83-fs _{rms} Jitter and 0.037-mm ² Core Area	KIOXIA A Schottky Junction as a Hole Injector for Enhancing Erase Operation of 3D Flash Memory in CMOS Directly Bonded to Array (CBA) Era with Over 1,000 Word Lines
	C18-2 16:25-16:50 Distributed Power Management for	C17-2 16:25-16:50	T10-2 16:25-16:50	T11-2 16:25-16:50 Record-high <i>P</i> r (2 <i>P</i> r > 40 μC/cm ²) in 3 nm	C20-2 16:25-16:50 A 131-dBSPL AOP 66.3-dB SNR 105.7-µA-	C19-2 16:25-16:50	T9-2 16:25-16:50 Low-Temperature NiSi Formation via
	Peking 22nm AI Processor with Event-Driven Univ. Exponential Dual-Loop LDOs and Online Sparsity-Aware Droop Mitigation	National A 22nm 41.8TFLOPS/W AI-edge Transformer/CNN Nonvolatile-Processor Using QKV- Softmax-Layer-Fused Hybrid ReRAM-CIM and Concurrent-Transpose/Non-Transpose SRAM- Univ.		Vational Univ. of Singapore and Oxygen Vacancy Engineering	Zhejiang Standby All-Dynamic Digital Microphone Univ. with Self-Clocked Interference-Resilient Acoustic Activity Detection	Univ. Phase Modulation	POSTECH Microwave Annealing for Stable Metal- Induced Lateral Crystallization in 3D NAND Flash Memory
16:00-	C18-3 16:50-17:15 A Fully Integrated Buck Voltage Regulator	C17-3 16:50-17:15	T10-3 16:50-17:15	T11-3 16:50-17:15	C20-3 16:50-17:15	C19-3 16:50-17:15	T9-3 16:50-17:15 Wide Memory Window and Steep ISPP 16:
18:05	in 16nm with in-Package Air Core	Tsinghua CELLA: A 28nm Compute-Memory Co-Optimized Real-Time Digital CIM-Based Edge LLM Univ. Accelerator with 1.78ms-Response in Prefill and 31.32 Token/s in Decoding C17-4 17:15-17:40	Peking First Experimental Demonstration of Dual-sided N/P FETs in Filp FET (FFET) on 300 mm Univ. Wafers for Stacked Transistor Technology in Sub-1nm Nodes T10-4 17:15-17:40	National Taiwan Univ. Low-Voltage (V _{so} = 0.8 V) Ferroelectric Memory with Record-High Energy Efficiency: Applications in Selector-Free FeRAM and Neuromorphic Computing T11-4 17:15-17:40	Univ. of Macau A 5.2µW, 2-to-8-Channel Scalable, Speaker-Tracking Microphone Array Featuring a CNN-Defined AFE C20-4 17:15-17:40	Univ. A 31.5-36 GHz Low-Spur Gain-Boosting College Charge-Sharing Locking PLL with 54fs Dublin Jitter C19-4 17:15-17:40	Micron Stope (13.2 V and 2.7) of an Aggressively 18 Technology Scaled 3D Ferroelectric NAND (FeNAND) Cell for <30nm Tier Pitch Scaling
	National An 85.6%-Efficiency Supply Modulator	Univ. of		Stacked AFE-Like/FE HZO (4.5nm) to	A 33aFrms, 3.4pF Base Capacitance,	A 2 3-15 8-GHz 8-Phase Injection-Rinnle-	3D NOR-type FeFETs with Record
	Yang Ming An 83.8%-Elificiency Supply Modulator Chiao with Auxiliary Bidirectional Power for Zung Univ. 200MHz 5G NR Applications	California, A Fully Integrated Mixed-Signal Compute-In-Memory Accelerator for Solving Arbitrary Order Santa Boolean Satisfiability Problems Barbara	National Taiwan Univ. Featuring Tri-State Inverter/Half SRAM Functionalities	Taiwan Univ. Achieve 0.75V Operating Voltage and Record Endurance Exceeding 7E12 Using Water Quenching and TiN Top Electrodes	ETH 192fF Input Range, 500kHz Sampling Zurich Frequency, Capacitance-to-Voltage Converter Using a Resonant LC Bridge	imec Filtered Multi-Ring-Coupled DCO Enabling a Wideband Digital PLL	Peking Endurance of 10 ¹¹ , Fast Erase of 50 ns, Univ. and Immediate Read-After-Write for In- Memory Learning
	C18-5 17:40-18:05			T11-5 17:40-18:05	C20-5 17:40-18:05		
	A 90-260 V _{AC} Isolated Offline Single-Stage Single- Transformer-Winding Multiple-Output (STWMO) RGBW LED Driver with <0.7% Current Variation and Dimmable Current-Regulated Error-Based Control			First Demonstration of Annealing-free RT-prepared AlScN Film with Large Polarization ($2P_r > 300 \ \mu$ C/cm ²) and Ultra-Sharp E _c Distribution for 0T1C FeRAM	A Temperature-Insensitive Period- Modulation CDC with DLL-Based Comparator Delay Compensation Achieving 53.5ppm/°C without Calibration	n	
19:15-		19:1	5-21:15		19:15	5-21:15	19:
21:15		Bai	nquet		Banquet Lo	ounge Room	21
					1	3	1

2025 Symposium on VLSI Technology and Circuits (Thursday, June 12)

_								2023 591100310111 0	n VLSI Technology and Circu	113 (Thu suay, Julie
Т	ime		Suzaku III		Suzaku II	Suzaku I		Shunju III	Shunju II		Shunju I
	00- 7:00								Registration		
F		(223: Innovatie Computing Systems		C21: Innovations in Bra	ain State Classification		TFS2: Advanced Transistor	Evolution in the Next Decade	T12: 0	Oxide Semiconductors 2: IW
	C	23-1	8:30-8:55	C21-1	8:30-8:55		TFS2-1	8:30-8:55 (Invited)		T12-1	8:30-8:55
			A 0.71nJ, 1.536S/s Throughput 256-FFT Using Floating Point Analog Computation		<u>PANDA</u> : A 3.178 TOPS/W Reconfigurable <u>A</u> ccelerator for Epilepsy Monitoring	Seizure <u>P</u> rediction <u>AN</u> d <u>D</u> etection Neural Network	тѕмс	Assessment on Nanosheet Transistor Var	iants Beyond 2nm Node	National Yang Ming Chiao Tung Univ	First Demonstration of BEOL-compatil 2 nm-thick Indium-Tungsten-Tin-Oxide with Superior Short-channel Electrica Achieving Enhancement-mode V _{TH} , I _{0N} , MV/dec.
	C	23-2	8:55-9:20	C21-2	8:55-9:20		TFS2-2	8:55-9:20 (Invited)		T12-2	8:55-9:20
			An OFDMA Baseband Processor Enabling 165µW Long-Range IoT Localization	Delft Univ. of Technology	A Closed-Loop Neuromodulation Chipset v and 0.075mm ² -6.76µW Seizure Classificat	with 0.0009mm ² -0.36µW/Ch Recording Frontend ion Backend	Intel	Beyond RibbonFET: Energy Efficiency Inno Next Decade	ovations to Drive Technology and Design for the	Nara Institute of Science and Technology	Intrinsic Mobility of 120 cm
_		23-3	9:20-9:45	C21-3	9:20-9:45		TFS2-3	9:20-9:45		T12-3	9:20-9:45
	of S	azhong Univ. Science and chnology	A 28nm 84.9K0PS 1.82µJ/op RISC-V Crypto-SoC with Primitive-based Deep- coupling Unified Post-Quantum Engine	KAIST	A No-Patient-Data Seizure Classifier SoC 1 Using Feature Fusion and Near-Memory C	for Real-Time Classification of Seven Seizure Types Computing	Samsung Electronics		I Technology Featuring Single Diffusion Break (SDB n CPP for Advanced Mobile and High Performance) Purdue Univ.	Critical Role of Quantum Co on Transfer Length in Achi Performance In ₂ O ₃ Transist Ultra-Scaled Contacted Ga
	C	23-4	9:45-10:10	C21-4	9:45-10:10		TFS2-4	9:45-10:10		T12-4	9:45-10:10
	Te Re	dustrial chnology esearch stitute	Enabling Privacy-Preserving Collective Intelligence: A Twin In-Memory Encryption/ Processing Macro Featuring Group Differential Privacy and Spatial-Temporal Ensemble	EPFL	A 32-Channel 196-µW Logarithmic SoC for Adaptive Psychiatric Symptom Classificat	Brain Network Connectivity Extraction and ion	IBM Albany NanoTech	Compressive Diffusion Break Stressor for Performance Improvement	Gate-All-Around Nanosheet pFET Transistor		l First Demonstration of 2-flu Nanosheet FET Enabled by Layers and Fluorine Passiv
			C25: Advanced PLLs		JFS3: AI and	ML Hardware		T15: 2D and BE	EOL Transistors	C24: C	ircuit Techniques for Biomedica
	C	25-1	10:30-10:55	JFS3-1	10:30-10:55 (Invited)		T15-1	10:30-10:55		C24-1	10:30-10:55
		olitecnico MIlano	A Fractional-N Digital-PLL Based on a Power-Gated Ring-Oscillator and a Frequency-Stabilizing Loop Achieving 74fs Jitter Under $3mV_{pp}$ Supply Ripple	Cerebras Systems	Wafer-Scale Integration for AI – The Holy	Grail?	Intel	Record PMOS WSe ₂ GAA Performance Us Exploration of Manufacturable, High-yield		KU Leuven	An Active Silicon Perforate Seamless 3D Organoid Inte with Low-Noise, Scalable M Electrophysiology
	C	25-2	10:55-11:20	JFS3-2	10:55-11:20 (Invited)		T15-2	10:55-11:20		C24-2	10:55-11:20
			A 58.9fs-Jitter Fractional-N Digital PLL Using a Double-Edge Variable-Slope DTC	Huawei	Design Considerations for LLM Inference	in Data Centers: Chip and Interconnect	National Univ. of Singapore	First Demonstration of BEOL-Compatible Stackable Oxide Semiconductor CFET, DR	Co-Sputter Deposited $Te_{1,x}Se_x p$ -FETs Enabling 3D AM, and First CFET-Structured SRAM	Yonsei Univ.	A 10kHz-BW, 86.7dB-SNDR FoM, LNA-Embedded CT ΔΣ Closed-Loop Neural Record
	C	25-3	11:20-11:45	JFS3-3	11:20-11:45 (Invited)		T15-3	11:20-11:45		C24-3	11:20-11:45
	2:35 Ko Ur Sc	ne Hong ong niv. of cience and cchnology	A 6.4GHz Fractional-N PLL with 96.6fs _{rms} Jitter and -257.4dB FoM	NVIDIA	Marco: Configurable Graph-Based Task So Hardware Design	olving and Multi-AI Agents Framework for	National Yang Ming Chiao Tung Univ	Doping	Performance and On/Off Ratio Using Tunable	Rice Univ.	38kbps Multi-Access Magn Backscatter Communicatio Interrupted WPT for a Netw Miniature Wireless Bio-Imp
	C	25-4	11:45-12:10	JFS3-4	11:45-12:10		T15-4	11:45-12:10		C24-4	11:45-12:10
	м	IIT	A 55.8-to-64.2GHz, 58.3fs _{rms} -Jitter, -250.2dB-FoM _J Fractional-N Cascaded PLL in 28nm CMOS	National Taiwan Univ.	An 157TOPS/W Transformer Learning Pro Zeroth-Order Optimization	ocessor Supporting Forward Pass Only with	тѕмс	1000x Lower Leakage in High-Performand	ce Carbon Nanotube Nanosheet FETs	Univ. of Michigan	128-Channel Multi-Chip Ac Hologram Generator
				JFS3-5	12:10-12:35		T15-5	12:10-12:35			
				Weebit Nano FR	On Chip Customized Learning on Resistive	e Memory Technology for Secure Edge Al	Samsung Advanced Institute of Technology	Wafer-Scale Monolithic 3D Integration of (CMOS Logic Gates Based on 2D Materials		

12:35-14:00

14:00												
		C30: Cryo-CMOS Circuit	C	29: Communication and Processors	T19: (Gate Stack and BEOL Transistor Processes		T18: Interconnects	T17: Oxi	de Semiconductors 3: Device Physics and Reliability	C2	7: Sensing and Ranging Tech
	C30-1	14:00-14:25	C29-1	14:00-14:25	T19-1	14:00-14:25	T18-1	14:00-14:25	T17-1	14:00-14:25	C27-1	14:00-14:25
	IBM T. J. Watson Research Center	A 5.6-100K, 128ppm/K Cryo-CMOS Current Reference	National Taiwan Univ.	A 142mW 6.4Gbps Massive MU-MIMO RSMA Detector for Next-Generation Communication Systems	Stanford Univ.	Orthogonal $V_{\rm T}$ Tuning for Oxide Semiconductor 2T Gain Cell Enabled by Interface Dipole Engineering	IBM Albany NanoTech	Novel Advanced Low-k Dielectric for 2 nm and Beyond Cu and Post Cu Dual Damascene BEOL Interconnect Technologies	Stanford Univ.	Key to Low Supply Voltage: Transition Region of Oxide Semiconductor Transistors	Canon	2/3-inch 2.1Megapixel SPAI Sensor with 156dB Single-S Range and LED Flicker Mitig on Weighted Photon Counti
	C30-2	14:25-14:50	C29-2	14:25-14:50	T19-2	14:25-14:50	T18-2	14:25-14:50	T17-2	14:25-14:50	C27-2	14:25-14:50
14:00- 15:40	Univ. of Macau	A Cryo-CMOS RF-DAC Based Super-heterodyne Transmitter for Superconducting Qubit Control		A 6.2mm ² 56.6Gbps 18.2pJ/b oFEC Decoder for Optical Communications		First Demonstration of 9N+9P Complete Dipole Multi-V_{TS} CMOS Integration with Atomic Interfacial Dipole Buffer Layer Technique in GAA NSFETs		BEOL Interconnects for 2nm Technology Node and Beyond	National Univ. of Singapore	First Demonstration of Fluorine-Treated IGZO FETs with Record-Low Positive Bias Temperature Instability ($ \Delta \Psi_{TH} < 44$ mV) at an Elevated Temperature (395 K)	Sony Semiconductor Solutions	A 25M points/s Back-Illumir SPAD Direct Time-of-Flight I with Equivalent Time Sampl Automotive LiDAR
10.40	C30-3	14:50-15:15	C29-3	14:50-15:15	T19-3	14:50-15:15	T18-3	14:50-15:15	T17-3	14:50-15:15	C27-3	14:50-15:15
	Tsinghua Univ.	A Cryogenic 1.08mW/Qubit Fully- Integrated 4-Channel Frequency- Division-Multiplexing Transmon Qubit State Readout ASIC in 28nm Bulk CMOS	Univ. of California, Berkeley	Cygnus: A 1 GHz Heterogeneous Octa- Core RISC-V Vector Processor for DSP	imec	Shifter materials and Stack Explorations for V, Fine-Tunable Dual Dipole Multi-V, Gate Stacks Compatible with Low Thermal Budget CFET	imec	Selective Deposition and Ruthenium Superfill Exploration Beyond A10 Node Interconnects	IMECAS	First Demonstration of Atomic-Interlayer-Tuning Driven by First Principles Calculations and Atomic Layer Deposition towards High Thermal Stable BEOL IGZO-FETs with SS=62mV/dec, PBTI < 7mV@ 3MV/cm and 353K		A Radiation-Hardened Neuro Imager with Self-Healing Sp and Unified Spiking Neural I Space Robotics
	C30-4	15:15-15:40	C29-4	15:15-15:40	T19-4	15:15-15:40	T18-4	15:15-15:40	T17-4	15:15-15:40	C27-4	15:15-15:40
	AIST	0.25 mW/qubit, 5.7-7.5 GHz Cryogenic CMOS Microwave Signal Selector Using Dual-Stage Injection-Locked Oscillator for Frequency-Multiplexed Qubit Control	KU Leuven	A 16nm 550 - 1320 BTOPS/W NPU Exploiting Training-free Structured Bit- level Sparsity and Dynamic Dataflow Processing	Korea Univ.	High-Performance Monolithic 3D CMOS Enabled by Orientation-Aligned Seedless Laser Crystallization and Ultra-Shallow Laser Activation	Samsung Electronics	Effects of Adjacent Floating Metal Interconnect Through Plasma-Induced Coupling	Shanghai Jiao Tong Univ.	First Direct Observation of Two Different Hydrogen-Related Processes Corresponding to the Negative VTH Shift Under PBTI Stress in IGZO Transistors by Pd Hydrogen Spillover	Intel	A 320µm ² Minimum Guard-b Resistor-based Temperature +/-1.4°C Inaccuracy in 18A F CMOS with PowerVia
	C3	3: Wireless Power and Gate Drivers		C32: High-Resolution ADCs		C31: MEMS and Display	T21: /	Advanced Packaging and 3D Integration		T22: DTCO and Design Enablement		T20: DRAM
	C33-1	16:00-16:25	C32-1	16:00-16:25	C31-1	16:00-16:25	T21-1	16:00-16:25	T22-1	16:00-16:25	T20-1	16:00-16:25
	The Hong Kong Univ. of Science and Technology	A 6.78 MHz Multiple-Transmitter Wireless Power Transfer System with Integrated Coupling Coefficient Sensor	Peking Univ.	An 88.8dB-SNDR 6-MS/s Pipelined SAR ADC with A Closed-Loop Dynamic Amplifier Featuring Highly-Linear Full- Scale Output Swing	Infineon Technologies AG	A Fully Integrated Bipolar 1.8Vpp-to- 41Vpp 450kHz Switched-Capacitor MEMS-Driver with a Power Reduction Factor of 16.3	UCLA CHIPS	Power Delivery for Scaled-Out Chiplet- Based Wafer-Scale Systems with 8 µm Cu-Cu Bond Pitch on Active Si- Interconnect Fabric Substrate	imec	Extending the Gate-All-Around (GAA) era to the A10 node: Outer Wall Forksheet Enabling Full Channel Strain and Superior Gate Control	imec	Process Insights into 3D-DR Vertical Bit Line and Scalab Transistor
	C33-2	16:25-16:50	C32-2	16:25-16:50	C31-2	16:25-16:50	T21-2	16:25-16:50	T22-2	16:25-16:50	T20-2	16:25-16:50
	KAIST	A Multi-Rectenna, Single-Output, Power Combine-and-Regulate Boost Converter for 5.8GHz Wireless Power Receiver Achieving 3.1W over 50m-Distance	Yonsei Univ.	A 91.2dB-SNDR 250kHz-BW CT Zoom ADC Achieving a 6-bit Linear Zoom-in with Interstage LPF and 1.5-bit DAC	Xidian Univ.	A 22µg/√Hz Noise Floor, 1.6mg/g ² VRC, High Efficiency MEMS Capacitive Accelerometer using High-Voltage Orthogonal Excitation Technique	Applied Materials	Investigation of Post-Bonding Die Stretching in Die-to-Wafer Hybrid Bonding	imec	SRAM Scaling Opportunities Below 0.01 µm ² Using Double-Row CFET Architecture with Wordline-Folded Bitcell Design for Performance Optimization	Samsung L Electronics	High Performance and Relia Vertical Channel Transistor Extremely Low Contact Resi 10 Year BTI lifetime for Sub-
	C33-3	16:50-17:15	C32-3	16:50-17:15	C31-3	16:50-17:15	T21-3	16:50-17:15	T22-3	16:50-17:15	T20-3	16:50-17:15
16:00- 18:05	Hanyang Univ.	A Wireless Power and Synchronized Full-Duplex Data Transceiver IC with 400 kbps Bidirectional Data Rate Using a Single Inductive Link for Low-power Systems	Tsinghua Univ.	A 0.0035mm ² 86dB-SNR 1.25MHz-BW Noise-Shaping SAR ADC Enabling kT/C Noise Shaping	Fudan Univ.	A 560µW 6fA/√Hz 146dB-DR Ultrasensitive Current Readout Circuit for PWM-Dimming-Tolerant Under- Display Ambient Light Sensor	Powerchip Semiconductor Manufacturing	Novel Ultra-thin Transistor Layer Transfer (TLT) Technology for Demonstrating Wafer-Level nm- Scale 3-Layer Stacking to Enable Multi-Tier Transistors and Backside PDN of a 3D Vertical FET Architecture	Peking Univ.	PPA Scaling of Flip FET Technology Down to A2 Node Enabled by Architecture Innovations Self-aligned Gate, 2T Design with Embedded Power Rail and Ultra-stacked 4-Tier Transistors		First Thorough Assessment Dependent Dielectric Break 25 nm Gate-All-Around Vert Transistor for 4F ² DRAM App
	C33-4	17:15-17:40	C32-4	17:15-17:40	C31-4	17:15-17:40	T21-4	17:15-17:40	T22-4	17:15-17:40	T20-4	17:15-17:40
	Univ. of Science and	A Dual-Mode Direct-Drive D-GaN Driver with Reused Inductor and Power Switches for Negative Voltage Generation and Gate Energy Recycling	Univ.	A 94.4dB-SNDR 500kHz-BW Multi- Rate MASH 0-1-0 ADC with Easy-to- Drive Capacitive Input and Deadband- Embedded Gm-C Loop Filter	Korea Univ.	A Hybrid Touch Sensing AFE with Common-CVQ (Currents, Voltages, and Charges) Subtraction to Improve Display Noise Immunity for Large Sensing Load Up to 820pF	National Univ. of Singapore	First Demonstration of 3D Monolithic- Integrated BEOL OSFETs on GaN HEMTs: CEO-GaN	Peking Univ.	First Demonstration of Symmetric Dual-Sided Vertical FET (DSVFET) for Energy Efficient Computing (EEC): From Processes and Devices to Circuits		A Recall-Free 3D Stackable Built Upon Gate-Controlled
			C32-5	17:40-18:05							T20-5	17:40-18:05 (Late News)
			Univ. of Michigan	An NS-SAR Quantizer-Based Pipeline Incremental Delta-Sigma ADC Using a Current-Regulated Floating Ring Amplifier and Two-Phase Miller Negative-C							SK hynix	4F ² DRAM Integration with V (VG) Cell Transistor and Per (PUC) Architecture

	Salon de Charme	Le Bois	La Cigogne		Le Cygne	Time
						7:00-
IWTO and In ₂ O ₃		C22: OTP and Nonvolatile Memory			T13: Power Devices	
		C22-1 8:30-8:55		T13-1	8:30-8:55	
patible ALD-deposited Dxide (IWTO) TFTs trical Characteristics:		A 2nm Gate-All-Around 128Kb Anti- Samsung Fuse One-Time Programmable Memory		Peking	3-kV GaN Smart Power Integration Platform for High-Power-Density	
4, I _{ON/OFF} > 10 ¹⁰ , SS ~ 63.3		Electronics Featuring Dynamic Bit-Line and Sense- Amplifier Offset Cancellatio		Univ.	Conversion Systems Using Charge- Balanced Superjunction Technology	
		C22-2 8:55-9:20		T13-2	8:55-9:20	
Doped In_2O_3 xceeding		GAA Backside-Power eFuse with			Improving Irradiation Reliability of	1
cm ² /Vs for	[Constitution Docume]	Intel 0.72um2 Bitcell, 1.59V Field Program,		Southeast Univ.	4H-SiC 1200V LDMOS and 20V CMOS Logic Circuits with Leakage Current	
Compatible FET	[Satellite Room] T13	On-Demand Read and 1.8V Standby			Blocking Technology	8:30-
	113	C22-3 9:20-9:45		T13-3	9:20-9:45	
n Confinement chieving High-		A 4.2 Gb/s 5 th generation F-chip of Toggle Samsung 5.1 Specification with All-Path Speed			High Power/PAE (27.8dBm/66%) Emode	
sistors with		Electronics Boosting Scheme and SCA Protocol for		imec	GaN-on-Si MOSHEMTs for 5V FR3 UE Applications	
Gate Pitch		High Density NAND Flash Applications				
		C22-4 9:45-10:10 A Prototype 16Mbit RRAM on 55nm BCD				
2-floor GAA In ₂ 0 ₃ I by TiN Sacrificial		ISMC with 56% Compact-Area Wordline Driver				
ssivation		Technology and Constant Write-Current Scheme for Automotive 150°C Operation				
dical Applications		C26: Switching Regulators		T1	4: RRAM and Selector Only Memory	
		C26-1 10:30-10:55		T14-1	10:30-10:55	
rated MEA for Interfacing		A 9.1mW All-5V-CMOS Series-Capacitor Univ. of AC-DC Converter with C_F Reallocation			A CMOS-Compatible 12nm 8Mb MLC RRAM Enabling Producible 2-Bit Per Cell	
le Multimodal		Macau Operations for 85-230V _{RMS} Mains Achieving 85.6% Efficiency at 858mW/		TSMC	for High Energy Efficiency Compute-In-	
		cm ³ Density		-	Memory in Edge AI Applications	
		C26-2 10:55-11:20		T14-2	10:55-11:20 Achieving Outstanding Endurance (>	-
IDR, 176.8dB- Γ ΔΣ ADC for		Univ. of A 16-24V to 1-1.8V 1.187W/mm ³ -Power- Science and Density Hybrid DC-DC Converter Featuring		SK	10 ⁷) in Large-Array Two-Deck 16 nm SOM through Process, Structure, and	
cording		Technology Inductor Current in Σ-Fibonacci Region for of China Unmanned Aerial Vehicle Applications		hynix	Design Strategies for Emerging SCM	
		C26-3 11:20-11:45		T14-3	Applications 11:20-11:45	1
agnetoelectric	[Satellite Room]	A 94.1%-Efficiency Flying-Capacitor-			Scalable Fabrication and Demonstration	10:30-
ation with Non- letwork of	T14	Shared 2-Inductor 3-Level Boost POSTECH Converter with Simultaneous V _{CF} and		Samsung Electronics	of the First Fully Integrated 14nm 2-Stack SOM (Selector Only Memory)	12:35
Implants		IL Balance Achieving <0.92%-V _{CF} and <0.22%-IL Error			Device	
		C26-4 11:45-12:10		T14-4	11:45-12:10	
Acoustic		Delft Matryoshka CSCR: A Reconfigurable Matryoshka-Stacked Continuous-			Multi-Stack InTe Selector-Only Memory (SOM) Achieving Ultra-Low Power	
Acoustic		Univ. of Scalable-Conversion-Ratio Switched- Technology Capacitor DC-DC Converter with 0.1-to-		POSTECH	Operation (10 µÅ) and Excellent	
		1.7V Input		T1/ F	Endurance (~ 10 ¹⁰ cycles)	
				T14-5 Samsung	12:10-12:35	-
				Advanced	Differences in Operational Mechanisms of As- and Sb-Based Selector Only	
				Institute of Technology	Memory for Emerging 3DXP Architecture	
		1				12:35-
				,		14:00
Technologies		C28: Sub-THz TRXs		T1/ 1	T16: FeRAM Array and Module	
		C28-1 14:00-14:25		T16-1	14:00-14:25 Designing Robust Interfaces of HZO	
SPAD Image gle-Shot Dynamic		Institute of Array Transceiver in 65nm CMOS for 6G		Samsung	Module (>10 ¹² at 85 °C) with High Sensing Margin (>300 mV) for <1.1 V 1T-	
Mitigation Based unting Technique		Science UE Module		Electronics	1F with Common Plate Line and 1T-nF FeRAM	
		C28-2 14:25-14:50		T16-2	14:25-14:50	
uminated Stacked		Institute A 52Gb/s 8.9dBm EIRP 300GHz-Band		Univ. of	Vertical 2T-nC FeRAM Demonstration:	
ght Depth Sensor ampling for	[Satellite Room]	of Amplifier-Last Outphasing Transmitter Science with Path Mismatch Calibration in 65nm		Notre	BEOL Read Transistor for 4F ² Memory Strings and Two-Terminal Selector	
		Tokyo CMOS		Dame	Design for Polarization Disturb Mitigation	14:00- 15:40
		C28-3 14:50-15:15		T16-3	14:50-15:15	}
leuromorphic Ig Spiking Pixels		Univ. of A 0.184 mm ² W -band Single-RTWO- Science and Based Subharmonic RX Achieving 3.72		Intel	FeRAM Capacitor with Novel Low-Power, Non-Destructive and High Endurance	
ural Network for		Technology dB-NF and I/Q Mismatch < 0.8° in 22nm of China CMOS		milet	Read Operation for High-Density Embedded Memory	
		C28-4 15:15-15:40		T16-4	15:15-15:40	
ard-band Metal					Exploring FeFET Degradation	1
ature Sensor with 8A RibbonFet		Univ. of A CMOS Antenna-to-Bits 230-mW 120- California Gbps F-band Receiver with Analog-		KAIST	Mechanisms: Mid-Interlayer as a Viable Solution for Stable Retention, Disturb	
		Irvine Domain 64QAM Detection and Extraction			Immunity, and Low V _{th} Variation	
					T23: Wireless and RF Devices	
				T23-1	16:00-16:25	
D-DRAM with				TEMO	Compact, Low-Loss, Cost-Effective, CMOS Embedded RF Switch Solution	
alable GAA				TSMC	Achieving DC-100GHz True-Time Delay Phase Shifter by Phase Change Material	
				T23-2	16:25-16:50	1
Reliable 4F ² IGZO					First Demonstration of Top T-gate BEOL-	
stor (VCT) with Resistance and				Xidian Univ.	Compatible Indium-Oxide RF Transistors with Record Maximum Oscillation	
Sub-10nm DRAM			[Satellite Room]		Frequency of 70 GHz	
			T21	T23-3	16:50-17:15	
nent of Time- reakdown in Sub-				IBM	Scaled-Footprint Ultra-Low Power	16:00- 18:05
Vertical InGaZnO				Research - Zurich	Record-High Combination of Low-Noise	
1 Application					and High-Frequency Performance	-
				T23-4	17:15-17:40	
able nvDRAM				Kyungpook National	Cryogenic In _{0.8} Ga _{0.2} As Quantum-Well High-Electron Mobility Transistors from	
lled Thyristor				Univ.	Low-Power Quantum Computing to Tera- Hz Applications	
;)				T23-5	17:40-18:05	
-					Cryogenic In _{0.8} Ga _{0.2} As Quantum-Well	1
vith Vertical Gate d Peri-Under-Cell				KAIST	High-Electron Mobility Transistors from Low-Power Quantum Computing to Tera-	
					Hz Applications	