Thursday, June 15, 8:30 a.m.
Chairpersons: M. Ieong, IBM TJ Watson Research Ctr.
N. Nagashima, Sony Corp.

17.1 – 8:30 a.m.

For the first time, a transistor performance improvement is achieved by increasing the tensile stress of O3-TEOS pre-metal dielectric (PMD) using a novel plasma treatment and integration scheme. Plasma-treated O3-TEOS films show more tensile stress value about twice than that of an as-deposited O3-TEOS film. The novel process shows up to 10% improvement of Ion for nMOS without any cost of pMOS degradation.

17.2 – 8:55 a.m.
A Novel Cu Electrical Fuse Structure and Blowing Scheme Utilizing Crack-Assisted Mode for 90-45nm-Node and Beyond, T. Ueda, H. Takaoka, M. Hamada, Y. Kobayashi, A. Ono, NEC Electronics Corporation, Kanagawa, Japan

This paper presents the redundancy technology that uses Cu wiring as electrical fuse (e-fuse) for the first time. The novel e-fuse employs “crack-assisted mode” to blow fuse-material (Cu wire). Because Cu wiring is used instead of gate poly electrode material, the technology is extendible from the present 90nm~65nm technology-node to a few generations beyond 45nm-node, where Cu wiring is still likely to be employed. This e-fuse technology achieves very high reliability of less than 0.001ppm defective rate. High stability of this new e-fuse has been proven with actual 90nm generation products.

17.3 – 9:20 a.m.
A New Route to Ultra-High Density Memory Using the Micro to Nano Addressing Block (MNAB), R.S. Shenoy, K. Gopalakrishnan, C. T. Rettner, L.D. Bozano, R.S. King, B. Kurdi, H.K. Wickramasinghe, IBM Almaden Research Center, San Jose, California

For the first time, we demonstrate sublithographic memory read/write operation using Micro to Nano Addressing Block (MNAB) decoders. Test structures are fabricated with integrated one-time programmable oxide ROM elements addressed using MNAB devices that have 4 sub-50 nm silicon fins at 140 nm period. Functional operation is obtained for all 4-bit ROM sequences and over different ROM cell areas.

17.4 – 9:45 a.m.

CMOS image sensor (CIS) of 5-mega pixel density has been successfully developed with the smallest pixels (1.7µm x 1.7µm) ever made. The newly introduced unique pixel architecture brought excellent optical symmetry and high electron capacity. Degradation of sensitivity and cross-talk can be suppressed with the optimization of the optical structure through proper color filter material and reduction of total aspect ratio (vertical stack height / pixel pitch) with Cu back end of line (BEOL).