0.622-8.0Gbps 150mW Serial IO Macrocell with Fully Flexible Preemphasis and Equalization

Ramin Farjad-Rad, Hiok-Tiaq Ng, M.-J. Edward Lee, Ramesh Senthinathan, William J. Dally1, Anhtuyet Nguyen, Rohit Rathi, John Poulton, John Edmondson, James Tran, Hadi Yazdanmehr

Velio Communications Inc., Milpitas, CA 95035, USA.

Stanford University, Stanford, CA 94305, USA. 1

Abstract: This paper presents a 622Mbps to 8Gbps transceiver in standard 0.13µm CMOS technology. Each receiver and transmitter macrocell has its dedicated clock multiplication unit (CMU) and clock/data recovery unit (CDR), providing simultaneous multi-rate operation for multiple lanes on a chip. The transmitter and receiver front-end use direct 4:1 multiplex and 1:4 demultiplexing, using multiple-phase quarter-rate clocks. An automatic phase offset cancellation scheme is used to eliminate the phase mismatch of the multiple clock phases. Each transceiver occupies an active area of less than 0.4mm2 and consumes 150mW at maximum speed.
0.622-8.0Gbps 150mW Serial IO Macrocell with Fully Flexible Preemphasis and Equalization

Ramin Farjad-Rad, Hiok-Tiaq Ng, M.-J. Edward Lee, Ramesh Senthinathan, William J. Dally¹,
Anhtuyet Nguyen, Rohit Rathi, John Poulton, John Edmondson, James Tran, Hadi Yazdanmehr
Velio Communications Inc., Milpitas, CA 95035, USA.
Stanford University, Stanford, CA 94305, USA. ¹

Abstract: This paper presents a 622Mbps to 8Gbps transceiver in standard 0.13µm CMOS technology. Each receiver and transmitter macrocell has its dedicated clock multiplication unit (CMU) and clock/data recovery unit (CDR), providing simultaneous multi-rate operation for multiple lanes on a chip. The transmitter and receiver front-end use direct 4:1 multiplex and 1:4 demultiplexing, using multiple-phase quarter-rate clocks. An automatic phase offset cancellation scheme is used to eliminate the phase mismatch of the multiple clock phases. Each transceiver occupies an active area of less than 0.4mm² and consumes 150mW at maximum speed.
Abstract: This paper presents a 622Mbps to 8Gbps transceiver in standard 0.13µm CMOS technology. Each receiver and transmitter macrocell has its dedicated clock multiplication unit (CMU) and clock/data recovery unit (CDR), providing simultaneous multi-rate operation for multiple lanes on a chip. The transmitter and receiver front-end use direct 4:1 multiplex and 1:4 demultiplexing, using multiple-phase quarter-rate clocks. An automatic phase offset cancellation scheme is used to eliminate the phase mismatch of the multiple clock phases. Each transceiver occupies an active area of less than 0.4mm² and consumes 150mW at maximum speed.
0.622-8.0Gbps 150mW Serial IO Macrocell with Fully Flexible Preemphasis and Equalization

Ramin Farjad-Rad, Hiok-Tiaq Ng, M.-J. Edward Lee, Ramesh Senthinathan, William J. Dally1, Anhtuyet Nguyen, Rohit Rathi, John Poulton, John Edmondson, James Tran, Hadi Yazdanmehr

Velio Communications Inc., Milpitas, CA 95035, USA.

Stanford University, Stanford, CA 94305, USA.1

\textbf{Abstract:} This paper presents a 622Mbps to 8Gbps transceiver in standard 0.13\textmu m CMOS technology. Each receiver and transmitter macrocell has its dedicated clock multiplication unit (CMU) and clock/data recovery unit (CDR), providing simultaneous multi-rate operation for multiple lanes on a chip. The transmitter and receiver front-end use direct 4:1 multiplex and 1:4 demultiplexing, using multiple-phase quarter-rate clocks. An automatic phase offset cancellation scheme is used to eliminate the phase mismatch of the multiple clock phases. Each transceiver occupies an active area of less than 0.4mm2 and consumes 150mW at maximum speed.
0.622-8.0Gbps 150mW Serial IO Macrocell with Fully Flexible Preemphasis and Equalization

Ramin Farjad-Rad, Hiok-Tiaq Ng, M.-J. Edward Lee, Ramesh Senthinathan, William J. Dally¹, Anhtuyet Nguyen, Rohit Rathi, John Poulton, John Edmondson, James Tran, Hadi Yazdanmehr
Velio Communications Inc., Milpitas, CA 95035, USA.
Stanford University, Stanford, CA 94305, USA. ¹

Abstract: This paper presents a 622Mbps to 8Gbps transceiver in standard 0.13μm CMOS technology. Each receiver and transmitter macrocell has its dedicated clock multiplication unit (CMU) and clock/data recovery unit (CDR), providing simultaneous multi-rate operation for multiple lanes on a chip. The transmitter and receiver front-end use direct 4:1 multiplex and 1:4 demultiplexing, using multiple-phase quarter-rate clocks. An automatic phase offset cancellation scheme is used to eliminate the phase mismatch of the multiple clock phases. Each transceiver occupies an active area of less than 0.4mm² and consumes 150mW at maximum speed.
Abstract: This paper presents a 622Mbps to 8Gbps transceiver in standard 0.13µm CMOS technology. Each receiver and transmitter macrocell has its dedicated clock multiplication unit (CMU) and clock/data recovery unit (CDR), providing simultaneous multi-rate operation for multiple lanes on a chip. The transmitter and receiver front-end use direct 4:1 multiplex and 1:4 demultiplexing, using multiple-phase quarter-rate clocks. An automatic phase offset cancellation scheme is used to eliminate the phase mismatch of the multiple clock phases. Each transceiver occupies an active area of less than 0.4mm² and consumes 150mW at maximum speed.