Electrical Characteristics of TaSi$_x$N$_y$ Gate Electrodes
For Dual Gate Si-CMOS Devices

You-Seok Suh, Greg Heuss, Huicai Zhong, Shin-Nam Hong and Veena Misra
Department of Electrical Engineering, North Carolina State University, Raleigh, NC 27695
Tel 919-515-7356 Fax 919-515-5055 email: ysuh@unity.ncsu.edu

Abstract
In this work, the physical and electrical properties of TaSi$_x$N$_y$ films are evaluated for gate electrode applications. MOS capacitors with TaSi$_x$N$_y$ gates of varying N concentrations were fabricated. The stability of TaSi$_x$N$_y$/SiO$_2$/p-type Si stacks was studied at annealing temperatures of 700°C, 900°C, and 1000°C in Ar. When the nitrogen content exceeds 35 at.%, excellent stability of oxide thickness and gate current is observed for anneals up to 1000°C. The results also indicate that the workfunction of TaSi$_x$N$_y$ is compatible with NMOS devices.